rank$66734$ - definizione. Che cos'è rank$66734$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è rank$66734$ - definizione

LARGE CARDINAL PROPERTY GIVEN BY ELEMENTARY EMBEDDINGS OF INITIAL FRAGMENTS OF THE VON NEUMANN HIERARCHY V
Rank into rank; Rank-into-rank cardinal

Rank (linear algebra)         
MEASURE OF THE "NONDEGENERATENESS" OF THE SYSTEM OF LINEAR EQUATIONS AND LINEAR TRANSFORMATION ENCODED BY A MATRIX
Rank of a matrix; Rank of a linear transformation; Matrix rank; Rank (matrix theory); Row rank; Rank of a linear operator; Column rank; Rank matrix; Rk(A); Full rank; Rank deficient; Sylvester's Inequality; Rank deficiency; Full column rank; Full row rank; Sylvester's rank inequality
In linear algebra, the rank of a matrix is the dimension of the vector space generated (or spanned) by its columns. pp.
Military rank         
  • A poster showing the rank insignia of the officers of several armed forces at the time of the Second World War.
ELEMENT OF HIERARCHY IN ARMED FORCES
Military Rank; Rank (military); Military grade; Military ranks; Ranks and units; Military ranking; Generals' Stars; Generals stars; Temporary rank; Tetrarch (Macedonian rank); Tetrarch (Greek rank); War substantive; Substantive rank; Ranks of the army; Honorary rank; Ceremonial rank; Theater rank; Military Ranks; Army rank; War substantive rank; Military leader; Local rank; Naval rank; Honorary (rank)
Military ranks are a system of hierarchical relationships, within armed forces, police, intelligence agencies or other institutions organized along military lines. The military rank system defines dominance, authority, and responsibility in a military hierarchy.
Rank Prizes         
BRITISH AWARD IN OPTOELECTRONICS AND NUTRITION
Rank Prize for Optoelectronics; Rank Prize for Nutrition; The Rank Prize Funds; Rank Prize Funds; The Rank Prizes; Rank Prize in Optoelectronics; Rank Prize in Nutrition; Rank Prize
The Rank Prizes comprise the Rank Prize for Optoelectronics and the Rank Prize for Nutrition. The prizes recognise, reward and encourage researchers working in the respective fields of optoelectronics and nutrition.

Wikipedia

Rank-into-rank

In set theory, a branch of mathematics, a rank-into-rank embedding is a large cardinal property defined by one of the following four axioms given in order of increasing consistency strength. (A set of rank < λ is one of the elements of the set Vλ of the von Neumann hierarchy.)

  • Axiom I3: There is a nontrivial elementary embedding of Vλ into itself.
  • Axiom I2: There is a nontrivial elementary embedding of V into a transitive class M that includes Vλ where λ is the first fixed point above the critical point.
  • Axiom I1: There is a nontrivial elementary embedding of Vλ+1 into itself.
  • Axiom I0: There is a nontrivial elementary embedding of L(Vλ+1) into itself with critical point below λ.

These are essentially the strongest known large cardinal axioms not known to be inconsistent in ZFC; the axiom for Reinhardt cardinals is stronger, but is not consistent with the axiom of choice.

If j is the elementary embedding mentioned in one of these axioms and κ is its critical point, then λ is the limit of j n ( κ ) {\displaystyle j^{n}(\kappa )} as n goes to ω. More generally, if the axiom of choice holds, it is provable that if there is a nontrivial elementary embedding of Vα into itself then α is either a limit ordinal of cofinality ω or the successor of such an ordinal.

The axioms I0, I1, I2, and I3 were at first suspected to be inconsistent (in ZFC) as it was thought possible that Kunen's inconsistency theorem that Reinhardt cardinals are inconsistent with the axiom of choice could be extended to them, but this has not yet happened and they are now usually believed to be consistent.

Every I0 cardinal κ (speaking here of the critical point of j) is an I1 cardinal.

Every I1 cardinal κ (sometimes called ω-huge cardinals) is an I2 cardinal and has a stationary set of I2 cardinals below it.

Every I2 cardinal κ is an I3 cardinal and has a stationary set of I3 cardinals below it.

Every I3 cardinal κ has another I3 cardinal above it and is an n-huge cardinal for every n<ω.

Axiom I1 implies that Vλ+1 (equivalently, H(λ+)) does not satisfy V=HOD. There is no set S⊂λ definable in Vλ+1 (even from parameters Vλ and ordinals <λ+) with S cofinal in λ and |S|<λ, that is, no such S witnesses that λ is singular. And similarly for Axiom I0 and ordinal definability in L(Vλ+1) (even from parameters in Vλ). However globally, and even in Vλ, V=HOD is relatively consistent with Axiom I1.

Notice that I0 is sometimes strengthened further by adding an "Icarus set", so that it would be

  • Axiom Icarus set: There is a nontrivial elementary embedding of L(Vλ+1, Icarus) into itself with the critical point below λ.

The Icarus set should be in Vλ+2 − L(Vλ+1) but chosen to avoid creating an inconsistency. So for example, it cannot encode a well-ordering of Vλ+1. See section 10 of Dimonte for more details.